
Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 1 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

 ICC-1C

Industrial Current Controller Manual

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 2 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

Copyright ©2025 Optotune Switzerland AG. All Rights Reserved.

The ICC-1C controller’s hardware and corresponding software, Optotune Cockpit, shall only be used in connection

with the evaluation of the liquid lens product families. Any other use is not permitted without the prior written

authorization of Optotune Switzerland AG.

IN NO EVENT SHALL OPTOTUNE BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CON-

SEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS CURRENT CONTROLLER AND

ITS DOCUMENTATION, EVEN IF OPTOTUNE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

OPTOTUNE SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-

RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE CURRENT CONTROLLER AND AC-

COMPANYING DOCUMENTATION, IF ANY, PROVIDED HEREUNDER IS PROVIDED "AS IS". OPTOTUNE HAS NO OBLI-

GATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 3 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

Contents
1. Overview .. 5

2. Hardware overview .. 6

2.1. Package contents and description .. 6

2.2. Connecting to a computer or other system .. 8

2.3. Connecting to a lens .. 9

2.4. Mounting .. 11

2.5. Thermal Management .. 13

2.6. Do’s and Don’ts ... 13

3. Software operation .. 15

3.1. Lens related systems (widgets) ... 16

3.2. Controller related systems (widgets) .. 20

4. Software development kits (SDKs) ... 24

4.1. C# SDK installation and run ... 24

4.2. C# code example ... 24

4.3. Python SDK installation ... 27

4.4. Python code example.. 28

5. Firmware .. 29

5.1. Firmware content description .. 29

5.2. Firmware update ... 30

6. UART Communication Protocol ... 31

6.1. Pro (binary) mode ... 32

6.2. Pro mode example .. 34

7. Ethernet Communication ... 37

7.1. IP settings configuration via DHCP .. 37

7.2. Static IP address configuration ... 38

7.3. Ethernet communication example via Cockpit or a Telnet Client ... 40

7.4. Ethernet communication example via the Python SDK .. 41

8. I2C Communication .. 43

8.1. I2C Configuration .. 43

8.2. I2C communication protocol description .. 44

8.3. I2C Write command structure .. 45

8.4. I2C Read command structure ... 46

8.5. Changing the I2C register count .. 47

8.6. I2C Communication example (Raspberry Pi) ... 48

8.7. I2C Communication example (Arduino) .. 49

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 4 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

9. Analog Input Voltage mode ... 51

10. Input/Output trigger signals .. 53

11. Troubleshooting and FAQs ... 56

11.1. Status LEDs .. 56

11.2. Diagnostics in Optotune Cockpit ... 57

11.3. Diagnostics with the Device Manager and Terminal software ... 57

11.4. FAQs .. 60

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 5 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

1. Overview

The ICC-1C Industrial Controller enables seamless control of Optotune’s tunable liquid lenses with a wide variety

of control interfaces directly from a computer or from an electronics cabinet, offering a streamlined solution for

rapid deployment in optical applications.

Key Features:

• High-Precision Current Control: Adjustable current range from -500 mA to +500 mA with fine 65 μA cur-

rent step resolution

• Communication Interfaces:

o USB

o UART or I2C with automatic protocol detection after the device startup

o Ethernet with POE+ capability

o Analog Voltage Input Control in range from 0 to 10 V

o GPIO Trigger for event-based control

• Advanced Lens Calibration and Compensation: Enables readout of the stored calibration data and the

real-time temperature from the supported lenses for dynamic adjustment in Focal Power Mode

• Smart Step Feature to enable faster focal power settling time of the lens by applying a preconditioned

coil current waveform

• User-Friendly Control Options:

o Compatible with the Optotune Cockpit GUI for USB based control

• Various Output Connections and Debug Features:

o Hirose Connector for fast and robust industrial connection

o Auxiliary Connectors to connect an Extension Board providing an option to connect a liquid lens

via an FPC flex cable, while also providing various debugging options (external current measure-

ment, triggering, analog voltage control)

• Developer Support: Software Development Kits (SDKs) are available for Python and C#

• Compliance: Fully certified with RoHS, REACH and CE standards

The detailed technical specifications can be found in ICC-1C’s datasheet.

To access additional resources, like firmware updates, the Optotune Cockpit software or CAD files, please visit

Optotune’s Download Center (a free registration is required).

https://www.optotune.com/s/ICC-1C-Datasheet.pdf
https://www.optotune.com/registration-for-software-download

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 6 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

2. Hardware overview

2.1. Package contents and description

The ICC-1C can be ordered in three different package configurations:

ICC-1C

Figure 1: ICC-1C Controller

Description Quantity

ICC-1C 1

DIN rail adapter 1

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 7 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

As part of the ICC-1C Controller Kit (ICC-1C, DIN rail adapter, ICC-1C Extension Board, Power supply,

USB-C cable)

Figure 2: ICC-1C Controller Kit

Description Quantity

ICC-1C 1

DIN rail adapter 1

ICC-1C Extension Board for lenses with FPC flex cable 1

AC/DC Power supply to 24V/1A 1

USB-A to USB-C cable 1

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 8 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

ICC-1C PCBA (OEM version)

Figure 3: PCB only ICC-1C Controller

Description Quantity

ICC-1C Assembled PCB 1

2.2. Connecting to a computer or other system

The ICC-1C provides the following connectivity options:

A USB-C connector with an option to use as a power supply to the ICC-1C as well

Please note that while most USB devices can supply sufficient power to the controller driving

any of Optotune’s lenses under typical conditions (< 500mA), in some cases higher current

spikes might occur, so make sure to use a port rated according to the USB-C standard (> 3A

power delivery) or use the dedicated barrel supply connector.

An RJ-45 Ethernet connector with PoE capability (802.3af or higher)

The Auxiliary I/O connector can provide additional communication and power supply options

To use the ICC-1C with UART communication, connect the UART TX (pin 5), UART RX (pin 7) and

GND (pins 3 and 4) to the system that is controlling the device.

For I2C communication, the device uses the same pins as for the UART, with the I2C SCL signal

being on pin 5, the I2C SDA on pin 7 and the GND (pins 3 and 4).

This connector can also provide an option of an using an External power supply. To use this

feature, connect the External VCC (pin 13) and External GND (pin 14) to the supply rail of the

external device.

To decrease the current consumption of the system, there is also an Active Low Enable signal

(External VCC Enable – pin 1) on the connector. Pulling this signal down to the External GND rail

will turn on the ICC-1C and releasing it will disable controller, so that it will draw no power from

the system.

The ICC-1C provides an option to map an Analog Input Voltage to a specific lens currents or

focal powers and thus enables controlling a lens by a value from an external sensor or other

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 9 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

analog voltage. This feature is accessible by connecting the external analog signal to the Analog

In (pin 2) and GND (pins 3 and 4) of the auxiliary I/O connector

The controller also has two configurable GPIO pins (pin 6 and 8), which can be configured to

generate a trigger signal synchronized with the internal signal generator or to wait for an exter-

nal trigger signal before changing the current or focal power of the lens. Please note, that these

pins were meant to be used with 3.3V logic and as such, the related min/max voltages and

threshold levels shall be respected.

Figure 4: Auxiliary I/O connector pinout

Auxiliary I/O connector pinout

Position Function Description

1 External VCC Enable Enable signal for external power supply (connect to Power GND to activate)

2 Analog In Analog Input Voltage

3 Signal GND Digital and analog ground

4 Signal GND Digital and analog ground

5 UART TX/ I2C SCL Serial interface transmitter line / I2C clock line1

6 GPIO1 General purpose digital IO #1, Trigger Input/Output2

7 UART RX/ I2C SDA Serial interface receiver line / I2C data line1

8 GPIO0 General purpose digital IO #0, Trigger Input/Output2

9 - Reserved

10 - Reserved

11 - Reserved

12 - Reserved

13 External VCC External power supply input

14 External GND External power supply input - ground

1 configurable external serial interface for UART or I2C
2 configurable input/output

2.3. Connecting to a lens

The ICC-1C can be connected to a lens by using one of the following two options:

By using an industrial (Hirose) connector the lens can be simply and safely connected by a Hirose cable

to the plug on the front panel of the ICC-1C, until a “click” sound is heard. The advantage of this con-

nector is that the positions of the pins are unambiguous, so it is safe to connect it even by hot plugging

during the operation of the controller.

Pin 1

Pin 2

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 10 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

Figure 5: Connecting to a lens with Hirose connector

With an FPC flex cable and the ICC-1C Extension Board, by connecting the extension board to the two

Molex connectors on the front panel of the ICC-1C and then connecting the lens to the FPC connector on

the extension board. This option provides the ability for the users to do some measurements via the ex-

tension board, but they should be more careful, as the FPC cable is not suitable for hot plugging (it can

be inserted under an angle or even upside down), and an incorrect connection can cause damage to the

lens and/or the controller. To use the FPC cable connection safely, the power supply always should be

removed from the controller first, before manipulating with the flex cable.

Figure 6: Connecting to a lens with FPC connector

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 11 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

Figure 7: Proper connection to a lens with a flex cable and a wrong connection example with flipped flex cable

and not enclosed connector

2.4. Mounting

The ICC-1C is available in a compact metal casing that can be mounted on a standard DIN rail (a suitable adapter

is already included in the package with the controller). For more mounting details and dimensions, see the me-

chanical drawing below:

Figure 8: ICC-1C casing front view

Figure 9: ICC-1C casing side view

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 12 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

Figure 10: ICC-1C casing cross section A-A with the dimensions for the DIN rail adapter

Figure 11: DIN rail adapter for ICC-1C

Alternatively, a PCB-only (OEM) version is also available, in which case the ICC-1C can be mounted by standard

M3 screws or standoffs inside the casing of a larger device. For more mounting details and dimensions, see the

mechanical drawing below:

Figure 12: ICC-1C PCBA back view with the dimensions for the heights of the components

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 13 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

Figure 13: ICC-1C PCBA top view

2.5. Thermal Management

The ICC-1C has a built-in thermal monitoring for both the connected lens and the controller itself, to prevent

overheating and potential damage. The temperature limits for both the controller and the connected lens can be

programmed in the Optotune Cockpit, or by a custom software or device sending the appropriate command to

the controller.

During the placement and mounting of the controller it should be ensured that it’s not placed right next to a sig-

nificant heat source, so that the ambient temperature around the controller will remain in the range defined in

the datasheet (max. 65 °C).

2.6. Do’s and Don’ts

When using the Extension Board, do not connect or disconnect the FPC flex cable, while the

device is powered on. During these manipulations the adjacent pins on the cable can be tem-

porarily shorted and if the device is powered on at the same time, this may lead to EEPROM

data corruption and/or permanent damage to the controller or the lens.

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 14 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

This controller and its extensions (for example the Extension Board) can be damaged by ESD.

We recommend the device to be handled with appropriate precautions and protections. Fail-

ure to observe proper handling and installation procedures might cause damage. ESD dam-

age can range from subtle performance degradation to complete device failure.

Do not use aggressive agents such as acetone or acids to clean the ICC-1C, the Extension

Board or any of the other components included with the device.

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 15 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

3. Software operation

The Optotune Cockpit GUI allows users to establish connections with the controller and the connected lens,

monitor device statuses, and perform firmware updates. The menu on the left side contains 3 main sections:

The Electronics section is showing the type and the serial number of the connected controllers. Clicking

on the “+” button initiates a search for any compatible controller on the available interfaces.

The Products section is showing the type and the serial number of the lens connected to the selected

controller.

The Systems section contains a list of available features for the given controller and lens, and each of

them opens a standalone widget in the Dashboard section (right side) containing all the setting related

to that feature.

The application supports multiple customizable Dashboards, allowing users to rearrange and resize widgets to

suit their preferences and workflow.

Figure 14: Optotune Cockpit main window overview

The available systems/widgets in the software can be divided into two groups based on whether they contain

setting related to the controller or the connected lens.

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 16 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

3.1. Lens related systems (widgets)

Figure 15: Examples of widgets related to the lens

The widgets related to the lens allow the user to access settings and monitoring features for the various lenses,

such as:

Temperature readout and settings for the thermal shutdown temperature. This feature is only available

for lenses with a built-in temperature sensor.

Smart Step Filter feature to achieve better settling times during transitions.

EEPROM read/write widget, which allows to read out the serial number, calibration data and other in-

formation from the connected lens. It can also allow restoring the EEPROM data in case of issues or data

corruption. This feature is only available for lenses with a built-in EEPROM chip.

Input conditioning widget to apply an offset, scaling or transition speed limit to any input value defined

in the Input signal widget.

Input signal widget, which allows the user to select the controlled value (current or focal power) as well

as multiple options on how the given value should be controlled:

Static input value to maintain a certain output current or focal power value.

A Signal generator, where the user can set the output current or focal power to follow a prede-

fined waveform shape from the controller’s built-in signal generator (Sinusoidal, Triangular,

Square, Sawtooth, Pulse, Staircase or Fast autofocus waveforms are available).

Custom vector, where the user can define multiple output current or focal power values with

their respective timings for the lens to go through.

Analog input, where the user can map analog input voltage values (in the range of 0 – 10V) pro-

vided via the Analog In pin to a specific output currents or focal powers.

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 17 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

Figure 16: Input conditioning, Lens temperature readout and Smart Step Filter settings widgets

Figure 17: Lens EEPROM read/write widget

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 18 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

Figure 18: Input signal widget set to Static input

Figure 19: Input signal widget set to various waveforms from the Signal generator

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 19 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

Figure 20: Input signal widget set to Custom vector and Analog input

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 20 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

3.2. Controller related systems (widgets)

Figure 21: Examples of widgets related to the controller

The widgets related to the controller allow the user to access various settings and monitoring features of the ICC-

1C, such as:

Temperature readouts for various subsystems (the input power supply, the output current stage and

the MCU) and settings for the thermal shutdown temperatures for these subsystems.

Board status, Channel status and Autodetect features to monitor and control values related to the

driver, such as the Frontend voltage, which can improve the accuracy of the current control for different

sized lens or the Autodetect feature, which allows the user to turn on/off the automatic detection of the

lens connected to the controller.

Board EEPROM widget, which contains the information stored in the ICC-1Cs memory, such as the de-

vice’s serial number or the settings required for Ethernet and I2C communication.

Board logger widget, which allows monitoring and exporting values like output current, focal power and

even register values into a .csv file.

Snapshot manager widget, which can store two complete sets of settings for both the controller and the

lens. Slot number 1 is read-only and contains the factory defaults, while slot number 2 can by configured

and saved by the user.

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 21 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

Figure 22: Temperature readout widgets

Figure 23: Board status, Channel status and Autodetect widgets

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 22 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

Figure 24: Board EEPROM widget

Figure 25: Board logger widget

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 23 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

Figure 26: Snapshot manager widget

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 24 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

4. Software development kits (SDKs)

There are two different software development kits available for the ICC-1C – one for C# and one for Python. Both

are available on the Download Center website (a free registration is required). They contain the necessary librar-

ies to work with the ICC-1C as well as some example codes.

4.1. C# SDK installation and run

To install and run the C# SDK examples, the following steps should be performed:

1. Download the ICC-4C/ECC-1C/ICC-1C C# SDK from Optotune’s website.

2. Extract the .zip file.

3. This C# SDK requires to have Visual Studio and the .NET framework 4.6.1/4.6.2 installed, so please make

sure you have them on your PC.

4. Open the Icc4cExample.sln solution.

5. Build all and Run the appropriate project.

6. To create a new solution, in the downloaded C# SDK there are available .dll files, which could be added

into any project’s references and directly control Optotune’s products.

Additional information about the C# SDK can be found in the detailed SDK documentation (included in the \html

subfolder of the downloaded SDK – open the index.html file).

4.2. C# code example

using System;

using System.Threading;

using Icc4cExample;

using ICC4cPwmSdk.Device;

using ICC4cPwmSdk.Dtos;

namespace Icc1cExample

{

 internal class Icc1cExample

 {

 // To run this example, rename AnaInMain to Main and in Example.cs rename Main to

ExMain for example

 // static void Main(string[] args) -> is always an entry point

 static void Main(string[] args)

 {

 Console.WriteLine("Starting basic ICC-1C example...");

 Icc1cSdkDeviceController controller;

 while (true)

 {

 Console.WriteLine("Select connection: C = COM, E = ETHERNET");

 var key = Console.ReadKey();

 Console.WriteLine();

 //COM connection

 if (key.Key == ConsoleKey.C)

 {

 controller = new Icc1cSdkDeviceController();

 Console.WriteLine("What is the COM number of the ICC-1c?");

 var comport = Console.ReadLine();

 if (int.TryParse(comport, out var comInt))

 {

 if (controller.Connect(comInt))

 {

https://www.optotune.com/downloads

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 25 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

 break;

 }

 Console.WriteLine("Connection failed.");

 }

 }

 // Ethernet connection

 if (key.Key == ConsoleKey.E)

 {

 controller = new Icc1cSdkDeviceController(true);

 Console.WriteLine("Static IP or automatic search? A = auto, S = static");

 key = Console.ReadKey();

 Console.WriteLine();

 //Automatic ethernet search (DHCP has to be enabled in the board EEPROM

(default))

 if (key.Key == ConsoleKey.A)

 {

 var devices = EthernetSearcher.SearchEthernetIccBoards();

 if (devices.Count == 0)

 {

 Console.WriteLine("No ethernet boards found.");

 }

 else

 {

 Console.WriteLine($"Boards found({devices.Count}):");

 var index = 0;

 foreach (var device in devices)

 {

 Console.WriteLine($"Index: {index}, Serial number: {device.Se-

rialNumber}, IP: {device.Ip}, Port: {device.Port}");

 index++;

 }

 Console.WriteLine("Select index of the device you want to con-

nect.");

 var selectedIndex = Console.ReadLine();

 if (int.TryParse(selectedIndex, out var indexInt) && indexInt >= 0

&& indexInt < devices.Count)

 {

 if (controller.Connect(devices[indexInt].Ip, devices[in-

dexInt].Port))

 {

 break;

 }

 Console.WriteLine("Connection failed.");

 }

 }

 }

 //Static IP connection (static IP must be configured in the board EEPROM

(using Optotune Cockpit application), also DHCP has to be switched of in the board EEPROM)

 if (key.Key == ConsoleKey.S)

 {

 Console.WriteLine("Specify IP address of the board:");

 var ipAddress = Console.ReadLine();

 if (controller.Connect(ipAddress, 5000))

 {

 break;

 }

 Console.WriteLine("Connection failed.");

 }

 }

 }

 //Set board to PRO mode

 controller.ChangeModeToPro();

 //Getting board info

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 26 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

 Console.WriteLine("Board info");

 var serialNumber = controller.GetElectronicSerialNumber();

 var fwVersion =

 $"{controller.Status.GetBoardFirmwareMajorVersion()}.{controller.Status.Get-

BoardFirmwareMinorVersion()}.{controller.Status.GetBoardFirmwareRevisionVersion()}";

 Console.WriteLine($"Board serial number: {serialNumber}");

 Console.WriteLine($"Board firmware version: {fwVersion}");

 // In order to drive the connected product, device type of the product has to be

obtained (this is not needed if

 // automatic detection is allowed)

 var connectedDevice = controller.GetDeviceType();

 Console.WriteLine();

 Console.WriteLine(

 $"Connected device: {string.Join(Enum.GetName(typeof(EConnectedDeviceType),

connectedDevice))}");

 Console.WriteLine();

 var lensSerialNumber = controller.GetElectronicSerialNumber();

 Console.WriteLine(

 $"Lens {Enum.GetName(typeof(EConnectedDeviceType), connectedDevice)} ({lensSe-

rialNumber}) found");

 var lensTemperature = controller.TemperatureManager.GetDeviceTemperature();

 Console.WriteLine($"Lens temperature: {lensTemperature}°C");

 var minCurrent = controller.DeviceEeprom.GetMaxNegativeCurrent();

 var maxCurrent = controller.DeviceEeprom.GetMaxPositiveCurrent();

 Console.WriteLine($"Minimum current is {minCurrent} mA, maximum current is {maxCur-

rent} mA");

 Console.WriteLine();

 Console.WriteLine("Setting static current");

 //Setting input system to static input

 controller.InputStage.ChangeActiveSystem(EInputSignalStageSystem.StaticInput);

 for (var current = minCurrent; current <= maxCurrent; current += (maxCurrent - min-

Current) / 5)

 {

 //Value has to be converted from mA to A

 var currentInA = current / 1000;

 Console.WriteLine($"Current {currentInA} A");

 controller.InputStage.StaticValue.SetCurrent(currentInA);

 //Diopter can be set similarly

 //controller.InputStage.StaticValue.SetDiopter(lensChannel, diopterInDpt);

 Thread.Sleep(1000);

 }

 Console.WriteLine("Setting static current to 0 A");

 controller.InputStage.StaticValue.SetCurrent(0);

 Console.WriteLine();

 Console.WriteLine("Running signal generator");

 controller.InputStage.ChangeActiveSystem(EInputSignalStageSystem.SignalGenerator);

 controller.InputStage.SignalGenerator.SetUnitType(EICC4cPwmUnitType.Current);

 controller.InputStage.SignalGenerator.SetShape(ESignalGeneratorShape.Sinusoidal);

 controller.InputStage.SignalGenerator.SetAmplitude(0.2f);

 controller.InputStage.SignalGenerator.SetFrequency(5);

 controller.InputStage.SignalGenerator.SwitchRunning(true);

 for (var i = 0; i < 5; i++)

 {

 Console.Write(".");

 Thread.Sleep(1000);

 }

 controller.InputStage.SignalGenerator.SwitchRunning(false);

 Console.WriteLine();

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 27 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

 Console.WriteLine("Signal generator stopped");

 Console.WriteLine();

 Console.WriteLine("Device EEPROM");

 var eepromVersion =

 $"{controller.DeviceEeprom.GetEepromVersion()}.{controller.De-

viceEeprom.GetEepromSubVersion()}";

 Console.WriteLine($"EEPROM version: {eepromVersion}");

 var eepromBytes = controller.DeviceEeprom.GetBytes(0, 10);

 var eepromSize = controller.DeviceEeprom.GetDeviceEepromSize();

 Console.WriteLine(

 $"Printing {eepromBytes.Length}/{eepromSize} bytes saved in EEPROM:

{string.Join(", ", eepromBytes)}");

 Console.WriteLine();

 Console.WriteLine("Example finished.");

 Console.ReadLine();

 }

 }

}

4.3. Python SDK installation

To install the Python SDK for the ICC-1C, the following steps should be performed:

1. Download appropriate Python SDK from Optotune’s website.

2. Extract the .zip file.

3. The Python SDK is installed through pip, so make sure you have it installed (usually it’s already prein-

stalled in most Python environments).

4. Open the Command-line interface on your PC or your Python environment and run the following two

commands (administrator privileges might be required):

a. py -m pip install Download_location\ICC-4C_PythonSDK_version\optoKummenberg-version-

py3-none-any.whl

b. py -m pip install Download_location\ICC-4C_PythonSDK_version\optoICC-version-py3-none-

any.whl

5. If the installation was successful, the following folders should show up in the \Lib\site-packages sub-

folder of your Python environment:

* Download_location and version – replace these parts in the commands with the file location and version of the

download SDK.

* py -m – might not be required, if the command is run from certain Python environments.

Additional information about the Python SDK can be found in the detailed SDK documentation (included in the

\docs subfolder of the downloaded SDK – open the index.html file).

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 28 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

4.4. Python code example

from time import sleep

from optoKummenberg import UnitType

from optoICC import connectIcc1c, WaveformShape

Connecting to board.

Port can be specified like connect(port='COM12')

Ethernet can be specified like (ip_address='10.0.88.25')

icc1c = connectIcc1c()

#Getting board info

serial_number = icc1c.EEPROM.GetSerialNumber().decode('UTF-8')

fw_version = f"{icc1c.Status.GetFirmwareVersionMajor()}.{icc1c.Status.Get-

FirmwareVersionMinor()}.{icc1c.Status.GetFirmwareVersionRevision()}"

Getting the lens info

connected_lens = icc1c.MiscFeatures.GetDeviceType(0)

lens_serial_number = icc1c.channel[0].DeviceEEPROM.GetSerialNumber().de-

code('UTF-8')

#Setting input system to static input

icc1c.channel[0].StaticInput.SetAsInput()

min_lens_current = -300

max_lens_current = 300

Sweep current

for current in range(int(min_lens_current), int(max_lens_current)+1,

int((max_lens_current-min_lens_current)/6)):

 #Value has to be converted from mA to A

 current_in_A = float(current)/1000

 icc1c.channel[0].StaticInput.SetCurrent(current_in_A)

 sleep(1)

icc1c.channel[0].StaticInput.SetCurrent(0.0)

Running the signal generator

icc1c.channel[0].SignalGenerator.SetAsInput()

icc1c.channel[0].SignalGenerator.SetUnit(UnitType.FP)

icc1c.channel[0].SignalGenerator.SetShape(WaveformShape.SINUSOIDAL)

icc1c.channel[0].SignalGenerator.SetAmplitude(3)

icc1c.channel[0].SignalGenerator.SetFrequency(5)

icc1c.channel[0].SignalGenerator.Run()

for index in range(5):

 sleep(1)

icc1c.channel[0].SignalGenerator.Stop()

sleep(1)

icc1c.disconnect()

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 29 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

5. Firmware

The ICC-1C firmware architecture is organized into multiple Systems, which are modular components of the firm-

ware that collectively provide the device's functionality. Each system may expose a different set of registers

and/or vectors, which are user-accessible variables designed for communication and control.

5.1. Firmware content description

The ICC-1C’s firmware uses the following types of registers and vectors for communication with the host PC or

system:

• Registers:

o Definition: Each register is a 32-bit value used for reading and/or writing data from/to the con-

troller.

o Data Transfer: The register data is always transmitted in big-endian format (the most significant

byte is transmitted first).

o Data Types: The specific meaning of the 32-bit value is system-dependent and documented in

the system's firmware documentation. The common formats include:

▪ IEEE 754 32-bit float.

▪ Unsigned integers.

▪ Boolean values.

▪ Custom-defined formats.

o Access Types:

▪ Read-only: Used for monitoring or retrieving data from the controller.

▪ Write-only or Read/Write: Used to trigger some operations or update device states.

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 30 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

• Vectors:

o Definition: Vectors are variable-length equivalents of registers, typically used to manage arrays

of data.

o Structure:

▪ Vectors have defined size and data type, as documented for each system.

▪ Byte-addressable in most cases, though some systems may require specific alignment

(e.g. 4-byte chunks).

o Indexing: When working with vectors, they require an index to specify the portion of the vector

being accessed during the read/write operations.

• Documentation:

o More comprehensive details about the supported registers and vectors, their formats, and uses

can be found in the ICC-1C Firmware Documentation. The firmware (.hex file) and its related

documentation can be downloaded from Optotune’s Download Center, after completing the re-

quired registration. The documentation must be first unzipped to show the correct formatting.

5.2. Firmware update

The ICC-1C’s firmware can be updated via the Optotune Cockpit software using the USB connection. Updating

the firmware via I2C or Ethernet is not supported. To perform a firmware update of the controller, the following

steps should be performed:

1. Open the menu located in the top-left corner of the Optotune Cockpit interface.

2. Select the "Firmware Update" option. A new widget will appear on the current dashboard for managing

the firmware update process.

3. Click on the folder icon within the widget to browse for the appropriate .hex file.

4. After selecting the .hex file, click on the "Update" button to begin the firmware installation process.

5. Once the update is completed, please double-check the firmware version to ensure the update was suc-

cessfully applied (right-click on the icon of the ICC-1C under the “Electronics” and select “Properties”).

https://www.optotune.com/downloads

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 31 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

6. UART Communication Protocol

This chapter describes the protocols supported by the ICC-1Cs UART interface. While it is generally advised to use

either of the SDKs presented in chapter 4, the following enables to program ICC-1C on platforms not covered by

the Python and C# languages.

The serial communication in the system operates in one of two distinct modes: Simple Mode (ASCII Mode) and Pro

Mode (Binary Mode). Simple mode protocol is easier to implement but does not cover all functionalities of the

controller.

This mode is active by default upon a system startup. It provides a basic command set (Table 1. List of simple mode

commands) based on RS-232 serial communication for straightforward interactions and quick setup. It’s ideal for

scenarios where minimal communication complexity is required. It allows interaction with the ICC-1C via com-

monly available serial terminals like Termite or Putty.

Interface Details:

• Baud Rate: Arbitrary (auto-detected by the device).

• Data Bits: 8.

• Stop Bits: 1.

• Parity: None (N).

• Baud Rate Auto-Detection: The device can adapt to baud rate changes during operation, to do so the

"START" command must be issued.

Command Structure:

• Communication is ASCII-based, using predefined command and response formats.

• Commands and responses are terminated with a CR, LF sequence (i.e., 0x0D, 0x0A in hexadecimal).

• Case Insensitivity: Commands are not case-sensitive, simplifying their use.

• Whitespace Handling: Extra white spaces in commands are ignored, ensuring flexibility in formatting.

• Commands can be issued through a serial terminal interface.

• The ICC-1C responds with ASCII-encoded messages (Table 2. List of simple mode replies), making debug-

ging and testing straightforward.

Table 1. List of simple mode commands

Simple mode command Description

START[CR][LF] Answers “OK” if controller is ready to use and a device is detected. Otherwise “ERROR” is re-
ceived.

STATUS[CR][LF] Controller answers with a status encoded within 4 bytes of information.
Example: “0x00015000[CR][LF]”.
See the next section for further description of the status bytes.

ACKNOWLEDGE[CR][LF] Clears history error flags in the status register. Answers “OK”.

RESET[CR][LF] Restarts the controller’s firmware.
Note: no answer is sent via serial line.

GOTODFU[CR][LF] Starts the controller’s loader for firmware update.
Note: no answer is sent via serial line.

GOPRO[CR][LF] Starts binary protocol-based mode of serial communication. Serial message CRC is not checked.

GOPROCRC[CR][LF] Starts binary protocol-based mode of serial communication. Serial message CRC is checked.

GETID[CR][LF] Answers with firmware serial number.
Example: “18012600-00-A[CR][LF]”.

GETVERSION[CR][LF] Answers with firmware version number.
Example: “1.1.741857[CR][LF]”.

GETGITSHA1[CR][LF] Answers with 40 bytes hexadecimal GIT build identification.
Example: “24bb55274a300fe7116aaec5f8f7b023167faa7e[CR][LF]”

GETSN[CR][LF] Answers with board and device serial number.
Example: “Board: DIAA0045, Device: ANAA3495[CR][LF]”.

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 32 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

DETECTDEVICE[CR][LF] Runs autodetection of device on active channel, answers with device name.
Example: “EL-16-40-TC-5D[CR][LF]”.

GETDEVICESN[CR][LF] Answers with serial number of a device connected.
Example: “DeviceSN: ANAA3495[CR][LF]”

SETCURRENT=%float[CR][LF] Sets current value. Command supports decimal parameter value in mA units.
Current value is limited either by power capabilities of 1CC-1C controller itself or connected de-
vice.

GETCURRENT[CR][LF] Answers with value of active current. Returned value is decimal number in units of milliamperes,
Example: “15.6[CR][LF]”

SETFP=%float[CR][LF] Sets focal power. Supports float value in units of diopters limited to detected lens device capabil-
ity.

GETFP[CR][LF] Answers with focal power. Returned value is a float in diopters. If no lens is detected, it returns
“NO”.

GETFPMIN[CR][LF] Answers with focal power lower limit of lens device connected.
Returned focal power is decimal value in diopters. If no lens is detected, it returns “NO”.

GETFPMAX[CR][LF] Answers with focal power upper limit of lens device connected.
Returned focal power is a decimal value in diopters.
If no lens is detected, it returns “NO”.

GETTEMP[CR][LF] Answers with actual temperature of device connected.
Returned temperature is a decimal value in units of degree Celsius.
Example: ”27.54[CR][LF]”.

SETTEMPLIM=%float[CR][LF] Sets operational temperature limit in degree Celsius.

SETCURLIM=%float;%float[CR][LF] Set operational current limits in mA. The first argument is the positive limit < 0 to Max current >,
the second one is the negative limit < -Max current to 0 >.

GETCURLIMIT[CR][LF] Answers with the active current limits in mA.
Example:”500, -500[CR][LF]”.

Table 2. List of simple mode replies

Simple mode reply Description

OK[CR][LF] Command accepted and performed without limits.

NO[CR][LF] Command not accepted, for any reason.

OL[CR][LF] Command not accepted, because parameter reached lower limit.

OU[CR][LF] Command not accepted, because parameter reached upper limit.

ERROR[CR][LF] Command not available.

6.1. Pro (binary) mode

This mode offers an extended and more complex command set for advanced functionality and detailed control.

Suitable for applications requiring precise operations, custom workflows, or integration into more complex sys-

tems.

Pro mode is a byte-based protocol inspired by HDLC. Individual messages are delimited with the "delimiter" byte,

0x7e. To avoid the delimiter byte appearing in the message data, an "escape byte", 0x7d, is also used, and byte

stuffing is performed on every message before being sent out (so the receiver should then perform byte destuff-

ing) as follows:

• Every appearance of the bytes 0x7e or 0x7d in the data (so in a role other than the delimiter or the es-

cape byte) is replaced by the sequence 0x7d 0x5e or 0x7d 0x5d, respectively. In other words, every byte

that needs to be escaped by being XOR-ed with 0x20 and prepended with 0x7d.

• When destuffing, every instance of 0x7d should be treated as an escape byte – it should not be inter-

preted as a data byte, it only marks that the following byte should be XOR-ed with 0x20 before being

interpreted as another data byte.

Above the delimiting and stuffing layer, every pro mode message has the following format:

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 33 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

The semantics of the individual fields are as follows:

Slave address – this field is currently unused

Command – a 1-byte unique identifier of the selected command (see below)

Data size – the number of bytes in the following data field

Data – the data required by the command or response, limited to 50 bytes

CRC – the CRC checksum, present even if CRC is deactivated (the values can be ignored in that case)

Available pro mode commands:

Responses:

Responses have the same format as the commands (possibly with different payload data, see above) with the

command code of the response corresponding to the command code of the command being responded to. How-

ever, error responses are marked by the most significant bit being set in the command code (in other words, an

0x80 is added to the command code), and the payload should consist of a single 4-byte error flag, see the Error

Codes section of the firmware documentation.

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 34 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

6.2. Pro mode example

The section below shows a detailed description of pro mode with example of setting the Signal generator and

making a Temperature reading from the output stage of the ICC-1C controller. The example functions are written

in Python, but they should be easy to understand and straightforward to implement on any platform.

The serial communication is first set to pro mode with disabled CRC using the "GOPRO" command. After the Pro

mode communication has been established, the controller switches to a mode where it expects byte packets in

the format below (different from simple commands), with the delimiter 0x7e.

When Pro mode is activated, none of the simple mode commands will work, until the specific command to

change the communication mode back to simple mode is sent. After this command is sent, the simple mode

communication is established, and the controller will again accept string-based input commands from the simple

serial mode communication section.

Turning on the signal generator on the ICC-1C (channel 0 by default), after all its necessary parameters have

been set up:

self.send_cmd (b'7e' + b'00' + b'10' + b'06' + b'6001' + b'00000001' + b'0000' + b'7e')

Where:

0x7e is the delimiter + 0x00 is an unused byte (slave address) + 0x10 is the Set value pro mode command + 0x06

is the data size of 6 bytes + 0x6001 is the register ID to run the signal generator for channel 0 + 0x00000001 is the

True boolean value to be written into the register + 0x0000 are the 2 unused CRC bytes + 0x7e is the delimiter

again.

Reading the temperature of the output stage – register 0x2202 is done by sending the following command:

self.send_cmd (b'7e' + b'00' + b'11' + b'02' + b'2202' + b'0000' + b'7e')

Where:

0x7e is the delimiter + 0x00 is an unused byte (slave address) + 0x11 is the Get value pro mode command + 0x02

is the data size of 2 bytes + 0x2202 is the register ID for the output stage temperature + 0x0000 are the 2 unused

CRC bytes + 0x7e is the delimiter again.

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 35 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

Switch command mode back to Simple mode:

self.send_cmd (b'7e' + b'00' + b'06' + b'01' + b'00' + b'0000' + b'7e')

Where:

0x7e is the delimiter + 0x00 is an unused byte (slave address) + 0x06 is the Set communication mode command +

0x01 is the data size of 1 byte + 0x00 is the 0 value to set the device in simple mode + 0x0000 are the 2 unused

CRC bytes + 0x7e is the delimiter again.

Example code (written in Python):

def float_to_ieee754_hex(x):

 # Pack the float as a 32-bit float in IEEE 754 format

 packed_float = struct.pack('>f', x)

 # Unpack the bytes as an unsigned integer and format as hex

 hex_representation = ''.join(f'{b:02x}' for b in packed_float)

 return hex_representation.encode('ascii')

def activate_signal_generator(self, channel=0):

 self.send_cmd(b'7e001006' + b'4' + str(channel).encode('ascii') + b'00'

+ b'00000060' + b'00007e')

def set_current_unit_type_signal_generator(self, channel=0):

 self.send_cmd(b'7e001006' + b'6' + str(channel).encode('ascii') + b'00'

+ b'00000000' + b'00007e')

def set_fp_unit_type_signal_generator(self, channel=0):

 self.send_cmd(b'7e001006' + b'6' + str(channel).encode('ascii') + b'00'

+ b'00000003' + b'00007e')

def run_signal_generator(self, channel=0):

 self.send_cmd(b'7e001006' + b'6' + str(channel).encode('ascii') + b'01'

+ b'00000001' + b'00007e')

def stop_signal_generator(self, channel=0):

 self.send_cmd(b'7e001006' + b'6' + str(channel).encode('ascii') + b'01'

+ b'00000000' + b'00007e')

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 36 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

def set_shape_signal_generator(self, channel=0, shape=0):

 self.send_cmd(b'7e001006' + b'6' + str(channel).encode('ascii') + b'02'

+ b'0000000' + str(shape).encode('ascii') + b'00007e')

def set_frequency(self, channel=0, frequency=0.0):

 self.send_cmd(b'7e001006' + b'6' + str(channel).encode('ascii') + b'03'

+ float_to_ieee754_hex(frequency) + b'00007e')

def set_amplitude(self, channel=0, amplitude=0.0):

 self.send_cmd(b'7e001006' + b'6' + str(channel).encode('ascii') + b'04'

+ float_to_ieee754_hex(amplitude) + b'00007e')

def set_offset(self, channel=0, offset=0.0):

 self.send_cmd(b'7e001006' + b'6' + str(channel).encode('ascii') + b'05'

+ float_to_ieee754_hex(offset) + b'00007e')

def set_phase(self, channel=0, phase=0.0):

 self.send_cmd(b'7e001006' + b'6' + str(channel).encode('ascii') + b'06'

+ float_to_ieee754_hex(phase) + b'00007e')

def set_cycles_signal_generator(self, channel=0, cycles=-1):

 # negative value sets infinite loop

 if cycles == -1:

 self.send_cmd(b'7e001006' + b'6' + str(channel).encode('ascii') +

b'07' + b'ffffffff' + b'00007e')

 # after reaching the number of cycles the signal generator stops

 else:

 self.send_cmd(b'7e001006' + b'6' + str(channel).encode('ascii') +

b'07' + str(cycles).encode('ascii') + b'00007e')

def get_output_stage_temperature(self):

 self.send_cmd(b'7e001102220200007e')

def get_power_supply_temperature(self):

 self.send_cmd(b'7e001102220400007e')

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 37 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

7. Ethernet Communication

Besides UART, the ICC-1C is also capable to communicate via Ethernet, which allows seamless implementation into

industrial systems or being accessible from multiple host computers. During the Ethernet communication, by de-

fault the device uses TCP/IP communication port number 5000. For IP address detection purposes, the device

replies to any broadcast message with the controller’s ID and serial number over the UDP port number 30321.

The IP settings of the device can be configured automatically by enabling the DHCP configuration feature, so that

the device can obtain an unused IP address from the server (this configuration is active by default). Alternatively,

the users can set up manual IP addressing by disabling the DHCP feature and configuring the IP Address, the Subnet

Mask and the Default Gateway manually. All the IP configuration settings are stored in the ICC-1Cs Board EEPROM

and can be changed using Optotune Cockpit software, the available SDKs (C# or Python) or any other communica-

tion interface (UART Pro mode or I2C).

7.1. IP settings configuration via DHCP

The IP settings of the ICC-1C can be configured to obtain an IP address from a nearby DHCP server. This option is

selected by factory defaults, but can be changed by the user under the Board EEPROM settings in Optotune Cock-

pit:

1. Open the Board EEPROM widget and check the “DHCP enabled” checkbox.

2. Press the “Set to device” button and click “Yes” when asked for board reset.

Figure 27: Enabling IP configuration via DHCP in Optotune Cockpit

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 38 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

7.2. Static IP address configuration

If the ICC-1C is connected directly to a computer via Ethernet, or if the connected network/router is configured

with static IP addressing, the controller can be also configured for static IP addressing. This can be also done in the

Optotune Cockpit software:

1. Open the Board EEPROM widget and uncheck the “DHCP enabled” checkbox.

a. Leaving this box checked will ignore the static IP settings and the device will try to obtain the IP

address from a server, even if there isn’t one.

2. Configure the “IP address”, the “IP subnet mask” and the “IP default gateway” fields for the device:

a. For the “IP address” setting, make sure that the selected address is a usable Host IP address,

and not an address for the entire subnetwork or a broadcast address.

b. The “IP subnet mask” should match the one configured on the host PC or the connected sub-

network.

c. The “IP default gateway" should be configured to the IP address of the host PC, if they are con-

nected directly, or if the controller is connected to a larger network, it usually should be the IP

address of the router for the given network.

3. Press the “Set to device” button and click “Yes” when asked for board reset.

4. If a direct connection to a host PC is used, the IP address should also be configured on the PC:

a. Open the Control Panel and navigate to Network and Sharing Center -> Ethernet -> Properties

-> Internet Protocol Version 4 (TCP/IPv4) -> Properties.

b. Select “Use the following IP address:” option.

c. The IP address of the PC should match the previously set “IP default gateway” from the ICC-1C.

d. The Subnet mask should be the same as the one configured on the ICC-1C.

e. The Default gateway of the PC should match the previously set “IP address” from the ICC-1C.

5. Click on OK in both Properties windows.

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 39 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

Figure 28: Example of a static IP address configuration in Optotune Cockpit

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 40 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

Figure 29: Example of a static IP address configuration in Windows

7.3. Ethernet communication example via Cockpit or a Telnet Client

To connect with the ICC-1C via Ethernet, the users can use the Optotune Cockpit software by selecting the Ethernet

tab in the “Add electronics” window, but any Telnet Client software should work (for example Putty or Hercules).

Figure 30: Connecting to the ICC-1C via Ethernet using Optotune Cockpit

To initiate a TCP communication via a Telnet Client, the IP address of the device should be entered to the appro-

priate field and TCP port number 5000 shall be selected. During the Ethernet communication, the ICC-1C uses the

same set of commands and replies as for the UART communication. It is possible to use the simple mode commands

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 41 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

terminated with a <CR> <LF> sequence, or switch to Pro mode and sending binary commands to the controller.

Figure 31: Ethernet communication with the ICC-1C using a Telnet Client

Upon connecting to the ICC-1C, depending on the given client software an “ERROR” message might be received –

this is caused by the software sending some identification request, which is not part of the ICC-1C’s instruction set

and thus the controller replies with an error. This message can be ignored, and the user could proceed by sending

the “START” command to initialize the ICC-1C.

7.4. Ethernet communication example via the Python SDK

from optoICC.tools.ethernet_searcher import EthernetSearcher

from optoICC.icc1c import ICC1cBoard

from optoKummenberg import UnitType

from optoICC import WaveformShape

from time import sleep

ip = input("Specify IP address of the board: ").strip()

ip = '192.168.1.2'

Connecting to board.

Port can be specified like connect(port='COM12')

Ethernet can be specified like (ip_address='10.0.88.25')

board = ICC1cBoard(ip_address=ip)

Configure and start the signal generator

board.channel[0].SignalGenerator.SetAsInput()

board.channel[0].SignalGenerator.SetUnit(UnitType.CURRENT)

board.channel[0].SignalGenerator.SetShape(WaveformShape.STAIRCASE)

board.channel[0].SignalGenerator.SetAmplitude(0.15)

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 42 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

board.channel[0].SignalGenerator.SetFrequency(2)

board.channel[0].SignalGenerator.Run()

for index in range(10):

 sleep(1)

board.channel[0].SignalGenerator.Stop()

sleep(1)

board.disconnect()

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 43 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

8. I2C Communication

In addition to UART and Ethernet communication, the ICC-1C also supports I2C communication, making it possible

to easily integrate into MCU controlled systems. This is particularly advantageous when the user wants to control

the ICC-1C as a part of a larger industrial system and align it with different cameras and actuators used by that

system.

8.1. I2C Configuration

To set up an I2C communication with the ICC-1C, three parameters can be configured in the device’s Board

EEPROM settings:

1. Since the Auxiliary I/O connector has shared pins for I2C and UART (pins 5 and 7), the ICC-1C provides an

option to choose the communication type and speed by the “Input interface” setting.

By default, this setting is configured as “AutoDetect”, which means that the device will detect the com-

munication type based on the first data packet, but it can be set to work only as I2C or to UART with a

specific Baud rate.

Changing this setting will not allow the device to communicate with the ICC-1C by the other communica-

tion options provided by these two pins (but the Ethernet and USB communication will still be availa-

ble).

2. The “I2C slave address” setting is used to store the I2C address for the ICC-1C.

The default address is set to 0x20, but can be changed by the user to any desired value.

3. The “I2C register count” setting determines, how many of the ICC-1C’s registers are changed by a single

I2C communication, e. g. how many data bytes are following the device address during the I2C commu-

nication.

The default value is set to be 2 registers, but it is possible to set it to 1 or 4 registers at a time as well.

4. To apply the configured settings, press the “Set to device” button and click “Yes” when asked for board

reset.

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 44 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

Figure 32: Ethernet communication with the ICC-1C using a Telnet Client

8.2. I2C communication protocol description

Depending on the “I2C register count” setting in the Board EEPROM, the ICC-1C can be configured via I2C commu-

nication by setting 1, 2 or 4 registers at a time. Since the device’s registers are defined with a 4-digit hexadecimal

address and they are storing a 32-bit data value, changing a single register via I2C requires sending 6 bytes of data

(1 byte system ID + 1 byte register address and 4 bytes of data) in a single communication. If the device is set to

configure multiple registers, then the final number of bytes sent after the I2C address should be the “I2C register

count” setting times 6 bytes (it should be 6, 12 or 24 bytes).

Reading data from the controller is done via 4 read pointer registers at addresses from 0x3100 to 0x3103. Writing

a system ID and register address into these registers will copy the content of the given register into this pointer

and then it can be read out by the following I2C read command. The device also contains 4 write error response

registers (addresses from 0x3104 to 0x3107), which contain a possible error response for the previously initiated

write command through I2C and it can be also read out by the following I2C read command.

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 45 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

When the device has been configured to write 2 or 4 registers at the same time, but only fewer registers are re-

quired to be changed by the user, the unneeded register write commands can be replaced by configuring the

read pointers to copy the value of any system and register ID.

8.3. I2C Write command structure

The following examples show the I2C command structure for setting 2 registers at the same time (default register

count setting).

• Set 2.5 dpt focal power as static input (1st register to write):

o System ID for “STATIC INPUT”: 0x50.

o Register address for “FP STATIC INPUT”: 0x04.

o The 32-bit float of 2.5 dpt in hexadecimal format corresponds to 0x40200000, so the data bytes

are: 0x40 0x20 0x00 0x00.

• Set Read pointer 1 for the lens temperature (2nd register to write):

o System ID for the I2C Read Pointers: 0x31.

o Register address for I2C Read Pointer 1: 0x01.

o The System ID for “TEMPERATURE MANAGER” is 0x22, and the register address for “DEVICE TEM-

PERATURE” is 0x00.

I2C

slave

ad-

dress

Write to the 1st register Write to the 2nd register

Byte# Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte 9
Byte

10

Byte

11

Byte

12

Mean-

ing

I2C

slave

ad-

dress

Sys. ID

1

Reg.

ad-

dress

1

Reg.

data 1

Reg.

data 1

Reg.

data 1

Reg.

data 1

Sys. ID

2

Reg.

ad-

dress

2

Empty

byte

Empty

byte

Sys. ID

to

read

Reg.

ad-

dress

to

read

Hex

value
0x20 0x50 0x04 0x40 0x20 0x00 0x00 0x31 0x01 0x00 0x00 0x22 0x00

Oper-

ation

Select

device

(write)

Set 2.5 dpt focal power as static input Set Read pointer 1 for lens temperature register

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 46 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

8.4. I2C Read command structure

Reading of the ICC-1C’s registers can be done in two steps. In the first step the read pointers must be configured:

• Set Read pointer 0 for the actual output current (1st register to write):

o System ID for the I2C Read Pointers: 0x31.

o Register address for I2C Read Pointer 0: 0x00.

o The System ID for “LINEAR OUTPUT” is 0xE8, and the register address for “OUTPUT CURRENT” is

0x02.

• Set Read pointer 1 for the lens temperature (2nd register to write):

o System ID for the I2C Read Pointers: 0x31.

o Register address for I2C Read Pointer 1: 0x01.

o The System ID for “TEMPERATURE MANAGER” is 0x22, and the register address for “DEVICE TEM-

PERATURE” is 0x00.

I2C

slave

ad-

dress

Write to the 1st register Write to the 2nd register

Byte# Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte 9
Byte

10

Byte

11

Byte

12

Mean-

ing

I2C

slave

ad-

dress

Sys. ID

1

Reg.

ad-

dress

1

Empty

byte

Empty

byte

Sys. ID

to

read 1

Reg.

ad-

dress

to

read 1

Sys. ID

2

Reg.

ad-

dress

2

Empty

byte

Empty

byte

Sys. ID

to

read 2

Reg.

ad-

dress

to

read 2

Hex

value
0x20 0x31 0x00 0x00 0x00 0xE8 0x02 0x31 0x01 0x00 0x00 0x22 0x00

Oper-

ation

Select

device

(write)

Set Read pointer 0 for output current register Set Read pointer 1 for lens temperature register

In the next step the host can read out the I2C data:

• Data from Read pointer 0 for the actual output current (read from the 1st register):

o System ID from Read pointer 0: 0xE8.

o Register address from Read pointer 0: 0x02.

o Data from Read pointer 0: 0x3E0DA1B0, which in 32-bit float format equals to 0.1383121 A.

• Data from Read pointer 1 for the actual lens temperature (read from the 2nd register):

o System ID from Read pointer 1: 0x22.

o Register address from Read pointer 1: 0x00.

o Data from Read pointer 1: 0x41FD0000, which in 32-bit float format equals to 31.625 °C.

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 47 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

I2C

slave

ad-

dress

Read from the 1st register Read from the 2nd register

Byte# Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte 9
Byte

10

Byte

11

Byte

12

Mean-

ing

I2C

slave

ad-

dress

Sys. ID

1

Reg.

ad-

dress

1

Reg.

data 1

Reg.

data 1

Reg.

data 1

Reg.

data 1

Sys. ID

2

Reg.

ad-

dress

2

Reg.

data 2

Reg.

data 2

Reg.

data 2

Reg.

data 2

Hex

value
0x20 0xE8 0x02 0x3E 0x0D 0xA1 0xB0 0x22 0x00 0x41 0xFD 0x00 0x00

Oper-

ation

Select

device

(read)

Read pointer 0 containing Sys. ID, reg. address and

data from the output current register

Read pointer 1 containing Sys. ID, reg. address and

data from the lens temperature register

8.5. Changing the I2C register count

The following examples show changing of the I2C register count command structure for setting 2 registers at the

same time (default register count setting).

• Unlock the Board EEPROM (1st register to write):

o System ID for “BOARD EEPROM”: 0x20.

o Register address for “LOCK”: 0x00.

o The 32-bit key value to unlock the Board EEPROM: 0x3F4744F6.

• Change I2C register count to 1 (2nd register to write):

o System ID for “BOARD EEPROM”: 0x20.

o Register address for “SLAVE I2C REGISTER COUNT”: 0x17.

o The 32-bit integer value for 1 register in hexadecimal format corresponds to 0x00000001, so the

data bytes are: 0x00 0x00 0x00 0x01.

I2C

slave

ad-

dress

Write to the 1st register Write to the 2nd register

Byte# Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8 Byte 9
Byte

10

Byte

11

Byte

12

Mean-

ing

I2C

slave

ad-

dress

Sys. ID

1

Reg.

ad-

dress

1

Reg.

data 1

Reg.

data 1

Reg.

data 1

Reg.

data 1

Sys. ID

2

Reg.

ad-

dress

2

Empty

byte

Empty

byte

Empty

byte

Reg.

data 2

Hex

value
0x20 0x20 0x00 0x3F 0x47 0x44 0xF6 0x20 0x17 0x00 0x00 0x00 0x01

Oper-

ation

Select

device

(write)

Unlock the Board EEPROM Set I2C register count to 1

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 48 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

After changing the I2C register count settings in the EEPROM, a Board Reset (power cycling) should be performed

for the changes to take effect.

8.6. I2C Communication example (Raspberry Pi)

The following example shows sending direct I2C commands to the ICC-1C from a Raspberry Pi’s console.

Write Command:

i2ctransfer –y 1 w12@0x20 0x50 0x04 0x40 0x20 0x00 0x00 0x31 0x01 0x00 0x00 0x22 0x00

w12 – Write 12 bytes

0x20 – I2C slave address

0x50 0x04 – Sys ID 1 and Reg. address 1 (Set static input in dpts)

0x40 0x20 0x00 0x00 – Data for register 1 (2.5 dpt encoded in hexadecimal format)

0x31 0x01 – Sys ID 2 and Reg. address 2 (I2C Read pointer 1)

0x00 0x00 0x22 0x00 – Data for register 2 (2 empty bytes + copy lens temperature register into Read pointer 1)

Read Command:

i2ctransfer –y 1 r12@0x20

r12 – Read 12 bytes

0x20 – I2C slave address

Read command – answer from the ICC-1C:

0xe8 0x02 0x3e 0x01 0xf1 0xa0 0x22 0x00 0x41 0xe2 0x80 0x00

0xe8 0x02 – Sys ID 1 and Reg. address 1 (Output current register)

0x3e 0x01 0xf1 0xa0 – Data from register 1 (0.126898 A in hexadecimal format)

0x22 0x00 – Sys ID 2 and Reg. address 2 (Lens temperature register)

0x41 0xe2 0x80 0x00 – Data from register 2 (28.3125 °C in hexadecimal format)

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 49 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

Figure 33: Ethernet communication with the ICC-1C using a Telnet Client

8.7. I2C Communication example (Arduino)

#include<Wire.h>

#define slaveAddress 0x20

//Read Device temperature and Output stage temperature

byte dataArray_ReadTempDataIndex[12] = {0x31, 0x00, 0x00, 0x00, 0x22, 0x00,

0x31, 0x01, 0x00, 0x00, 0x22, 0x02};

//Set focal Power and (dummy)Read Output stage temperature

byte dataArray_SetFocalPower25[12] = {0x50, 0x04, 0x40, 0x20, 0x00, 0x00,

0x31, 0x01, 0x00, 0x00, 0x22, 0x02};

byte dataArray_SetFocalPower0[12] = {0x50, 0x04, 0x00, 0x00, 0x00, 0x00,

0x31, 0x01, 0x00, 0x00, 0x22, 0x02};

int start = 0;

//Setup the Arduino

void setup()

{

 Wire.begin(); //initialise I2C

 Serial.begin(9600);

 delay (500);

 Serial.println("Setup done.");

}

//Run loop

void loop()

{

 if (start == 0) //Run loop only if start == 0

 {

 //Write Static Focal power to 2.5

 Wire.beginTransmission(slaveAddress);

 for (int i=0; i<12; i++)

 {

 Wire.write(dataArray_SetFocalPower25[i]); //data bytes are queued in

local buffer

 }

 Wire.endTransmission();

 Serial.println("FP set to 2.5 dpt.");

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 50 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

 delay (1000);

 //Write Static Focal power to 0

 Wire.beginTransmission(slaveAddress);

 for (int i=0; i<12; i++)

 {

 Wire.write(dataArray_SetFocalPower0[i]); //data bytes are queued in

local buffer

 }

 Wire.endTransmission();

 Serial.println("FP set to 0 dpt.");

 delay (1000);

 //Write to I2C Read pointers to device temperature and output stage temp

 Wire.beginTransmission(slaveAddress);

 for (int i=0; i<12; i++)

 {

 Wire.write(dataArray_ReadTempDataIndex[i]); //data bytes are queued in

local buffer

 }

 Wire.endTransmission();

 delay (200);

 //Read the data from I2C

 Wire.requestFrom(slaveAddress, 12); // request 12 bytes from slave de-

vice

 Serial.print("Temp readings: ");

 while(Wire.available())// slave may send less bytes than requested

 {

 Serial.print(Wire.read(),HEX); //read hex values

 Serial.print(" "); //add space between the hex values

 }

 Serial.println();

 delay (2000);

 //start = 1; //stop the loop after 1 run

 } //End of if

} //End of Loop

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 51 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

9. Analog Input Voltage mode

For the ICC-1C it is possible to map an analog input voltage 0-10 V to the driving current or the focal power (if

applicable) of the connected lens. Both linear and non-linear mapping are possible. With linear interpolation, the

controller linearly interpolates the analog voltage input range (0-10 V) to the corresponding pre-set output current

or focal power range. With non-linear analog voltage transition, mapping points can be added manually by the

user. For each point, the user can set the input voltage and the corresponding output current or focal power. A

toggle button is available to enable constant or linear extrapolation outside of the defined points.

Figure 34: Analog input voltage with non-linear mapping of focal power values

Since the Analog input voltage mode may require to configure multiple points at each startup of the controller,

the ICC-1C also offers a Snapshot Manager feature, which allows the user to store the settings in the device’s non-

volatile memory, so the snapshot with the mapping points will not be lost after powering off the device.

The ICC-1C has two snapshots available, which can be managed by the Snapshot manager widget in the Cockpit

software. Snapshot number one is the “Factory settings,” which allows the user to reload the factory default set-

tings on the device (this snapshot cannot be edited or overwritten). Users can create and store a new configuration

in the second available snapshot. It is also possible to choose which snapshot should be loaded during the device

start-up. For example, a user-defined snapshot can be saved as number 2 by pressing "Save" button. It is

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 52 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

recommended to also click on the "Load" button afterwards to check for potential failures. After that the snapshot

number can be selected under the “Startup snapshot” section and using the "Set” button it can be configured to

be the active setting after a device startup.

Figure 35: Snapshot manager widget

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 53 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

10. Input/Output trigger signals

The ICC-1C can be configured to generate an output trigger signal when changing the focal power/current of the

lens, or alternatively, wait for an incoming trigger signal before executing a predefined change on the connected

lens. These trigger signals can be synchronized with the controllers built-in signal generator or any custom vector.

For the ICC-1C, the following type of waveforms can be defined:

• Sinusoidal

• Triangular

• Square

• Sawtooth

• Pulse

• Staircase

• Fast autofocus waveform

• Any custom vector

By default, the trigger signals are configured as outputs. The trigger signal goes HIGH (3.3V, max. 5 mA) at phase

0° of the selected waveform and goes LOW in the middle of the period. For pulse patterns, the trigger signal reflects

the duty cycle.

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 54 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

Figure 36: Different waveforms overlapped with the corresponding Trigger OUT signal

When configured as inputs, the trigger signals can be used to start the built-in signal generator or a preconfigured

custom vector. When the trigger input signal goes HIGH (max 3.3V), the selected waveform starts off at phase 0°.

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 55 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

Figure 37: Different waveforms overlapped with an exemplary Trigger IN signal

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 56 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

11. Troubleshooting and FAQs

11.1. Status LEDs

The ICC-1C has two status LEDs on its from panel to indicate potential errors/warnings – one is showing the general

status of the whole controller (Main Status) and the other one is showing issues related to the output channel (Out

Status).

LED Color Legend

Main Status

Red Power on, no connection

Orange1 Operation OK (possible error)

Green Operation OK

Out Status
Red Lens error

Green Lens detected; operation OK

1 mixed from red and green LEDs. Depending on the

viewing angle, one color might be more dominant.

Both indicators are two-color LEDs (red/green) mounted in the same package, and the firmware is turning on either

one of them (Red or Green) or mixing both of them at the same time (Orange). For the Orange color, one of the

consisting colors might be more dominant depending on the view angle.

Figure 38: Pictures of the Main Status LED during various operation modes (Red, Orange, Green)

In normal operation, both LEDs should be glowing Green, when the device is powered, but below is a list of the

most common error cases:

• Both LEDs OFF – firmware issue. Potentially can be solved by the “Device recovery” feature in Cockpit or

in some cases by updating the firmware.

• Main status LED is Red – the device is unable to initiate communication. Check the communication cables

(USB, Ethernet).

• Main status LED is Orange, Out Status is OFF – lens not connected/not detected. Check the Hirose or the

flex cable.

• Out Status is Red – Lens error (for example overcurrent detected)

Further information can be obtained about the given errors/warnings by the Optotune Cockpit software or by

reading the devices status registers.

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 57 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

11.2. Diagnostics in Optotune Cockpit

If the device can be connected to a host computer via USB or Ethernet, the Optotune Cockpit software can provide

multiple diagnostic features. If some error/warning is present on the controller, a red or orange triangle can show

up next to the device’s name in the menu under the Electronics section. Clicking on this triangle opens a description

of this error/warning and also allows the user to clear the given message.

Figure 39: Example of a warning shown in Cockpit

Additional information can be collected by inspecting the data provided by the various Temperature readout, the

Board status and Channel status widgets.

The Board EEPROM widget can provide useful information about the settings stored in the controller, while the

EEPROM read/write widget allows to check the data related to the connected lens.

The Board logger widget allows to monitor some of the most important values in the controller and also any cus-

tom value (register address) over time and export the data into a .csv file.

11.3. Diagnostics with the Device Manager and Terminal software

If the controller cannot be recognized by Cockpit, it might be still possible to run some diagnostics using the Win-

dows Device Manager and some Serial terminal software, like Termite or Putty. Normally the ICC-1C should

show up in the Device Manager as a USB Serial Device under the COM Ports section, but in case of firmware is-

sues it can be also present itself as a DFU in FS Mode device or some unrecognized USB device.

https://www.compuphase.com/software_termite.htm

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 58 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

Figure 40: ICC-1C showing up in the Device Manager

If the device can be detected as a USB Serial Device, the user can connect to it by using a terminal software and

do some basic debugging. The settings for the software should be the following:

• COM Port: The same COM port as the one seen in the Device Manager

• Baud Rate: Any (should be auto-detected by the device, but for debugging purposes Baud rates like 57600

or lower is recommended).

• Data Bits: 8.

• Stop Bits: 1.

• Parity: None (N).

Figure 41: Connection settings for the ICC-1C in Termite

When connected to the COM port, the ICC-1C should accept any simple mode command described in the UART

Communication Protocol section of this document. The most useful commands for diagnostics are the following:

• START[CR][LF] – Answers “OK” if controller is ready to use and a device is detected. Otherwise “ERROR”

is received.

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 59 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

• STATUS[CR][LF] – The controller answers with a status encoded within 4 bytes of information (for exam-

ple “0x00015000[CR][LF]”), which directly represents the data in the ICC-1C status register in the firmware

(register address 0x1007).

• RESET[CR][LF] – Restarts the controller’s firmware. No answer is received after this command.

• GOTODFU[CR][LF] – Starts the controller’s bootloader for firmware update. No answer is received after

this command, but if successful the device should change into a “DFU in FS Mode” device in the Device

Manager and can be firmware can be recovered or updated in Cockpit.

Figure 42: Communicating with the ICC-1C in Termite

Figure 43: The ICC-1C’s firmware status register (reg. address 0x1007)

Manual: ICC-1C
Industrial current controller
Update: 22.4.2025

 Copyright © 2025 Optotune

Page 60 of 60

No representation or warranty, either expressed or implied, is made

as to the reliability, completeness or accuracy of this publication.

Optotune Switzerland AG | Bernstrasse 388 | CH-8953 Dietikon | Switzerland

Phone +41 58 856 3000 | www.optotune.com | sales@optotune.com

11.4. FAQs

Question 1:

The ICC-1C is unable to detect the connected lens or it does not recognize the lens type. What can I do?

Answer 1:

Check the device status register via the Cockpit software or terminal. Also check if the “Autodetect” feature is

enabled on the controller. Some lenses do not have EEPROM, so they show up as Unknown devices and can be

controlled only in current mode.

Question 2:

My lens has EEPROM, but I still can’t use Focal power mode. What can I do?

Answer 2:

If the lens has EEPROM (check the datasheet), but it’s not accessible, it may indicate data corruption. To restore

the data via the Cockpit software, please contact Optotune’s support team for the original lens EEPROM data and

further instructions.

Question 3:

The ICC-1C stopped working after an unsuccessful (for example unintentionally interrupted) firmware update.

What can I do?

Answer 3:

In some cases it may be possible to restore the device’s firmware by opening the menu in the upper left corner

of our Cockpit software and select “Device recovery”. Select the “Electronic type” and the device you want to

restore, and click “Recover”.

If there is no selectable device, then a full hardware reset might still be possible – please contact Optotune’s sup-

port team further instructions about this.

Question 4:

I’m unable to change the Board EEPROM settings (for example Ethernet settings or I2C address, etc.). What is the

issue?

Answer 4:

This may indicate that the controller’s Board EEPROM data got corrupted. It can be easily verified by opening the

Board EEPROM widget, and scrolling down to the “Board Parsing Result” field – if it says “NOK”, please contact

Optotune’s support team for the original EEPROM data for the given controller and further instructions.

